Divergence in physiological factors affecting swimming performance between anadromous and resident populations of brook charr Salvelinus fontinalis.
نویسندگان
چکیده
In this study, an anadromous strain (L) and a freshwater-resident (R) strain of brook charr Salvelinus fontinalis as well as their reciprocal hybrids, were reared in a common environment and submitted to swimming tests combined with salinity challenges. The critical swimming speeds (Ucrit ) of the different crosses were measured in both fresh (FW) and salt water (SW) and the variations in several physiological traits (osmotic, energetic and metabolic capacities) that are predicted to influence swimming performance were documented. Anadromous and resident fish reached the same Ucrit in both FW and SW, with Ucrit being 14% lower in SW compared with FW. The strains, however, seemed to use different underlying strategies: the anadromous strain relied on its streamlined body shape and higher osmoregulatory capacity, while the resident strain had greater citrate synthase (FW) and lactate dehydrogenase (FW, SW) capacity and either greater initial stores or more efficient use of liver (FW, SW) and muscle (FW) glycogen during exercise. Compared with R♀ L♂ hybrids, L♀ R♂ hybrids had a 20% lower swimming speed, which was associated with a 24% smaller cardio-somatic index and higher physiological costs. Thus swimming performance depends on cross direction (i.e. which parental line was used as dam or sire). The study thus suggests that divergent physiological factors between anadromous and resident S. fontinalis may result in similar swimming capacities that are adapted to their respective lifestyles.
منابع مشابه
Comparative transcriptomics of anadromous and resident brook charr Salvelinus fontinalis before their first salt water transition
Most salmonid taxa have an anadromous life history strategy, whereby fish migrate to saltwater habitats for a growth period before returning to freshwater habitats for spawning. Moreover, several species are characterized by different life history tactics whereby resident and anadromous forms may occur in genetically differentiated populations within a same species, as well as polymorphism with...
متن کاملMaternal genetic effects on adaptive divergence between anadromous and resident brook charr during early life history.
The importance of directional selection relative to neutral evolution may be determined by comparing quantitative genetic variation in phenotype (Q(ST)) to variation at neutral molecular markers (F(ST)). Quantitative divergence between salmonid life history types is often considerable, but ontogenetic changes in the significance of major sources of genetic variance during post-hatch development...
متن کاملMajor disruption of gene expression in hybrids between young sympatric anadromous and resident populations of brook charr (Salvelinus fontinalis Mitchill).
Genome-wide analyses of the transcriptome have suggested that male-biased genes are the first targets of genomic incompatibilities (g.i.) in inter-specific hybrids. However, those studies have almost invariably focused on Drosophila species that diverged at least 0.9 Ma, and with sterile male hybrids. Here, we use microarrays to analyse patterns of gene expression in very closely related (diver...
متن کاملThe rise and fall of isolation by distance in the anadromous brook charr (Salvelinus fontinalis Mitchill).
Geographic patterns of genetic diversity depend on a species' demographic properties in a given habitat, which may change over time. The rates at which patterns of diversity respond to changes in demographic properties and approach equilibrium are therefore pivotal in our understanding of spatial patterns of diversity. The brook charr Salvelinus fontinalis is a coastal fish exhibiting limited m...
متن کاملThe effect of temperature and ammonia exposure on swimming performance of brook charr (Salvelinus fontinalis).
The effects of water temperature and ammonia concentration on swimming capacity of brook charr (Salvelinus fontinalis, Mitchill, 1814) were determined by measuring gait transition speed (U(gt), cms(-1)), maximum burst speed (U(max), cms(-1)), tail-beat amplitude (a, cm), tail-beat frequency (f, Hz), maximum acceleration of bursts (A(max), cms(-2)), number of bursts, distance of bursts (cm) and ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of fish biology
دوره 90 5 شماره
صفحات -
تاریخ انتشار 2017